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We propose a new scheme for an approximate solution of the 
Schroedinger equation for a many-body interacting system, 
based on the use of pairs of  walkers. Trial wavefunctions for 
these pairs are combinations of standard symmetric and 
antisymmetric wavefunctions. The method consists in 
applying a fixed-node restriction in the enlarged space, and 
computing the energy of the antisymmetric state from the 
knowledge of the exact ground state energy for the symmetric 
state. We made two conjectures: first, that this fixed-
hypernode energy is an upper bound to the true fermion 
energy; second that this bound would necessarily be lower 
than the usual fixed-node energy using the same 
antisymmetric trial function.  The first conjecture is true, and 
is proved in this paper.  The second is not, and numerical and 
analytical counterexamples are given.  The question of 
whether the fixed-hypernode energy can  be better than the 
usual bound remains open. 
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Introduction 

Monte Carlo methods can be used to compute characteristics of many natural 
processes such as thermodynamic and transport properties of materials and, in 
particular, diffusion problems. This method is a fundamental tool for studying 
the many-body problem in quantum mechanics, in particular, the ground state 
energy of a many-body interacting system. The Schroedinger equation in real 
time is transformed into a diffusion equation in imaginary time, where the 
kinetic energy plays the role of a diffusion term and the potential is a source or 
sink of particles. Indeed, for positive imaginary times, the operator exp(-Hτ) 
acting on any state with no null projection c into the ground state |g› converges 
asymptotically to cexp(E0τ) |g›.1 This provides a simple recipe to obtain the 
ground state energy of a many-body quantum system with a diffusion algorithm. 
However, there is an important limitation: since the ground state of a many-body 
system is a symmetric (bosonic) wavefunction, the evaluation of the energy of 
fermionic systems cannot be obtained only using this technique.  Additional 
constraints must be added to force the wavefunctions to remain antisymmetric in 
the diffusion process2. In practice, the requirement of antisymmetry imposes 
boundary conditions upon the wavefunction. In this chapter we will describe a 
possible alternative to the standard fixed node approach based on the use of an 
extended space which is the product of the configuration space of the system 
under consideration by itself, in which a diffusion equation for pairs of points in 
the configuration space is implemented. Additional constraints are added in 
order to guarantee antisymmetry in the extended space. Such constraints in 
principle do not correspond to imposing a fixed-node constraint in the 
configuration space. In the next section we will review the fixed-node 
approximation. In the third section hypernodal functions in the product space 
will be introduced. The fourth section is devoted to the proof of upper bound 
properties for a restricted algorithm using hypernodal functions. The fifth 
section will present some results and some of the open questions related to this 
formalism. 

Fixed node approximation 

One of the earliest and still common approaches to impose antisymmetry is 
the so called fixed-node (FN) approximation2. In the standard FN-DMC, a trial 
wavefunction ψ(r) is used to impose a fixed-node boundary condition (where r 
denotes the 3N coordinates of the electrons). The trial wavefunction must satisfy 
some conditions described below3. The walkers that generate the diffusion 
process are constrained to remain in a volume inside the nodes of  ψ(r). Thus, 
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the nodes act as a boundary having an infinite repulsive potential. Any point r 
inside a volume defined by the nodes, has images generated by symmetry 
operations on other volumes Snr (where Sn are all possible permutations of 
electronic coordinates). Ideally the nodes of ψ(r) must define volumes that 
expand the complete 3N space Ω by applying all the symmetry operations of the 
group; that is, all the permutations of coordinates. This imposes some 
restrictions on the nature of the trial wavefunctions that can be used (i.e. for the 
ground state, they cannot have more nodes than required by symmetry.) Various 
techniques are used to contract these trial wavefunctions, typically including 
Slater determinants of appropriate basis functions and two-body correlations by 
way of Jastrow products.  DMC in the fixed-node approximation yields the 
ground state wavefunction  ψFN(r) inside a volume defined by the nodes of  ψ(r) 
Since ψFN(r) is obtained by projecting out the high-energy components of the 
original trial wavefunction compatible with its nodes,  the corresponding 
expectation value of H  must be less than or equal to that of the original trial 
wavefunction. 

An antisymmetric wavefunction that expands the full volume Ω can be 
obtained from  ψFN(r) with the operation: 

!=
n
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nFN
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The function ψ*
FN(r)  is, by construction, an antisymmetric wave function 

because χF(Sn) are the characters of the permutations operations in the 
antisymmetric representations of the symmetric group, i.e., the χF (Sn)=1  for 
even permutations and χF (Sn)=1 for odd permutations.  Therefore, the fixed-
node approximation limits the search of the fermionic ground state to the 
subspace of linear combinations of antisymmetric wavefunctions that share the 
nodes of a trial wavefunction ψ(r) .   Since the ground state of the true fermion 
problem ψ0 (r) could have in principle different nodes than ψ(r), we only obtain 
an upper bound of the fermionic ground state energy. The difference between 
this upper estimate and the true ground state energy is the nodal error of the 
fixed-node approximation. 

 
 

Hypernodal functions 

Various attempts have been explored to overcome the limitations imposed by 
the fixed-node approximation. Here we propose an algorithm which in principle 
should be able to  go beyond the highly successful but nevertheless still limited 
fxed-node diffusion Monte Carlo. 

(1) 
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We propose an alternative construction of the nodes in an expanded space that 
doubles the dimensions of the usual FN-DMC, and we impose fixed-node 
boundary conditions in this 6N-dimensional space. Instead of the usual fixed-
node approximation we propose determining the nodes using functions of the 
form: 

)()()()()(

)()()()()(

2121

2121

rrrr

rrrr

ASSA

c

HN

ASSA

b

HN

R

R

!!!!!

!!!!!

"=

+=
 

where R=(r1,r2), and the indexes 1 and 2 denote that the wavefunctions act on 
different subspaces with 3N coordinates each. It is straightforward to see that, if 
εA and  εS are the ground state energies of the fermionic and bosonic problem 
respectively, then 
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where H1 and H2 are identical except that H1 acts on the set (1) of 3N coordinates 
and H2 on the set (2). It remains to be shown that the ground state solution 
within the nodes of functions of the form ψb

HN and ψc
HN have higher energy than 

εA+εS. That implies that the the energy of the lowest energy state of a domain 
inside the nodes of  ψb

HN or ψc
HN is necessarily also the energy of a function with 

the structure of  ψb
HN  or ψc

HN. 
A key step in the standard fixed-node approximation is the selection of an 

antisymmetric trial wavefunction, that is, an irreducible representation of 
dimension 1 of the group of all permutations of electronic coordinates4. The 
irreducible representations of dimension 1 are eigenvectors of every operator Sn 
with eigenvalues χυ(Sn) denoted as characters. In general, for any H, if  ψυ(r) 
belongs to an irreducible representation ν of H of dimension 1 of some group of 
symmetry operations Sn, the nodes of ψυ(r) transform as H. That is Sn H=H and 
if ψ(r) =0, then  

0)()()( == rr !"! #

nn
SS    

for every Sn. The χυ(Sn)  are denoted as characters of the operator Sn on the 
representation ν.  Thus all volumes enclosed by the nodes of an irreducible 
representation of dimension 1  ψν(r) are equivalent by symmetry operations. 
      Accordingly, and provided that there are no additional accidental nodes, the 
full volume Ω can be expanded using Eq. (1). On the contrary, if ψ(r) is a 
mixture of two or more representations i) the nodes and the volumes enclosed 
are no longer equivalent by symmetry, ii) there is no way to obtain by symmetry 

(2) 

(3) 

(4) 
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operations the value of the ground state wavefunction outside a given volume; 
iii) since the volume are not equivalent, fixed nodes on different volumes give 
different energies.  

In summary, in order to obtain an upper bound estimation of a ground state, 
it is key that the ground state belong to an irreducible representation of 
dimension 1 of the symmetry group of H=H1+H2 . Using a trial wavefunction of 
the same irreducible representation will give an upper limit for the energy. Thus 
in order to prove the upper bound it is necessary and sufficient to demonstrate 
that functions of the form ψb

HN  or ψc
HN are irreducible representations of 

dimension 1 of some symmetry group that expands the volume Ω⊗Ω. Therefore, 
in the following section we will i) find the symmetry group ii) demonstrate that  
ψb

HN  or ψc
HN are irreducible representations with dimension 1 of the a group and 

iii) extend the ground state fixed-hypernode wavefunction in all of the higher-
dimensional space Ω⊗Ω. 

 

The extended Hamiltonian symmetries and some 
representations 

In order to prove that ψb
HN  and ψc

HN  are irreducible representations of 
some group, we need to recall some properties of the symmetric group (the 
group of all possible permutations).  Every permutation in the symmetric group 
commutes with the many-body Hamiltonian of identical particles.  In quantum 
mechanics, irreducible representations are associated with quantum numbers or 
conserved quantities such as parity, angular momentum, etc.  Good quantum 
numbers appear every time there is an operator that commutes with the 
Hamiltonian. There are two trivial 1-dimensional representations of the 
symmetric group. These representations are the identity (symmetric), with 
character 1 for every member of the group, and the antisymmetric 
representation, with character 1 for even and -1 for odd permutations. 
Depending on the order of the group (which is the number of permutations N!) 
there may be many other representations. 
In the case of the antisymmetric wavefunctions the quantity conserved can be 
related to the operator 
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that has eigenvalue 1 for every antisymmetric wavefunction and zero otherwise. 
It is possible to define analogously a bosonic operator QB which consists of the 

(5) 
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sum of all permutations with eigenvalue 1. The operators QF and QB can be 
rewritten as: 

],1][[]][1[
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where Sij is any single pair exchange and [ΣE] the sum over all even 
permutations. 

Suppose that Sij(1) is any permutation of two coordinates i,j on the space (1) 
and Slm(2)is another permutation acting on space (2). Since these two operators 
commute, the character table of the group generated by the product can be 
factored out as a product of the character tables of the subgroups. Moreover, the 
irreducible representations of the product group are products of the irreducible 
representations of the factors. Thus, since we know two irreducible 
representations of the symmetric group we can trivially guess four irreducible 
representations of the product group. They are given by: 
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There is a symmetry operation of the Hamiltonian that we have not considered 
so far: the exchange of all coordinates in the subsets (1) and (2) denoted by the 
operator P.  Applying P to the irreducible representations of the product of 
permutations in Eq. (7) one immediately finds that P mixes the second and third 
representation of the subgroup of all permutations in Eq.(7). Therefore, 
functions of the form ψb

HN  and ψc
HN generate an irreducible representation of 

dimension 2 of the group all symmetry operations of H,  and it is possible to 
define the operator T, 

)2()1()2()1()( FBBF  Q Q  Q  Qb,cT +=     

which is the associated projector into that subspace [see Eq.(6)]. This case is 
analogous to the group of continuous rotations in spherical symmetry. The 
representations have dimensions larger than one for angular momentum l >0.  

(6) 

(7) 

(8) 
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Because ψb
HN  and ψc

HN  belong to the same representation they give rise to 
degenerate states. Eigenfunctions within a representation with dimension larger 
than 1 can be classified according to a symmetry operation in the group. The 
exchange operator P can be used to assign an additional quantum number  to 
them with eigenvectors of the form ψb

HN  and ψc
HN. The associated projectors 

are: 
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Physically, one can also remove these degeneracies by breaking the 
symmetries of the Hamiltonian. We will follow this path to find a group that has 
ψb

HN  and ψc
HN as distinct irreducible representations. For that we consider only 

the permutations that commute with P, that is, only permutations of the form 
Sn(1).Sn(2).  
      The group of all Sn(1).Sn(2) is an isomorphism of the symmetric group of the 
Sn acting in a single space. Thus they have the same character tables. 
Multiplying every Sn(1).Sn(2) by E or P  defines a larger group of order 2N!. 
Taking advantage of the knowledge of two irreducible representations of the 
symmetric group one can generate the projectors of four representations of the 
product group. Since, as in the previous case the projectors are the product of the 
subgroups projectors: 
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where Sij(σ) is any single pair permutation acting on the set of coordinates σ, 
[ΣE(1).E(2)] is the sum over all the products of even permutations, and  N! is the 
total number of permutations.  By construction Q(±) are projectors on the 
symmetric and the antisymmetric representation of the group generated by  
Sn(1).Sn(2).  Since the even permutations are a subgroup of the symmetric group 
one has that [ΣE(1).E(2)][ΣE(1).E(2)]=[ΣE(1).E(2)] N!/2  and one can therefore 
show that Q(1,2) Q(1,2) = Q(1,2). 
     It is easy to see that  
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Also any symmetry operation outside this reduced group such as  

Sn(1).Sm(2) = Sn(1).Sn(2).Sn(2).Sm(2) = Sn(1).Sn(2).Sk(2) may be applied to ψb
HN: 
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Similar rules are found for ψc
HN. Therefore, only if Sk(2) is odd are the 

representations ψb
HN and ψc

HN mixed. In other words, we only need to remove 
the symmetries Sn(1).Sn(2).Sk(2) when Sk(2) is odd to split ψb

HN and ψc
HN. Since 

we know that ψb
HN is an eigenvector of all Sn(1).Sn(2).Sk(2), and of P for Sk(2) 

even, and that the eigenvalues are the same for different even Sk(2), we can write 
the associated projector that includes these symmetries as 
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With a little work it can be shown now that the projectors T(b) and T(c) 
defined in Eq. (9) and (14) are indeed identical. Therefore, T(b) and T(c) project 
into a representation of dimension 1 of a group, namely the one formed by all P 

(12) 
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(14) 
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and all Sn(1).Sn(2).Sk(2) with Sk(2) even.  Thus ψb
HN and ψc

HN are irreducible 
representations of dimension 1 of a subgroup of symmetries of H and  the 
volume enclosed by their nodes can be extended to the complete space by 
application of the operations of the subgroup. That is what we wanted to prove. 
In other words, just as the permutations are enough to construct an 
antisymmetric function over the full space, so, in our larger space, the 
permutations plus interchange of the two sets of coordinates serves the same 
purpose. 

Results 

The fixed-hypernode algorithm is a straightforward extension of the 
standard fixed-node procedure. Instead of working with a single walker, we use 
pairs of walkers, each one defined in the subspaces 1 and 2 respectively. Each 
walker is drifted/diffused according to the usual prescription using as 
importance function either ψb

HN  or ψc
HN. Moves are rejected whenever the 

importance function changes sign, and the energy is projected out of the 
importance function. The outcome is an upper bound for the sum of the energies 
of the symmetric and antisymmetric ground states. Additionally, one needs to 
compute the energy of the symmetric state by means of standard Diffusion 
Monte Carlo. The difference between this quantity and the FHN eigenvalue will 
give an upper bound for the ground state of the fermionic state. 

The important issue is to assess the quality of this upper bound with respect 
to the standard FN value. In fact, it can be easily seen that walkers subject to the 
FHN constraint are not in principle constrained within a nodal pocket in the 
configuration space, and more space can be explored. 

However, this fact in itself is not enough to guarantee that the FHN upper 
bound is better (or worse) than the FN one 

Numerical experiments were performed on two different systems. The first 
was a N=6 electrons quantum dot, defined by the Hamiltonian5 
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where m* =0.067 and ε=12.4 are the effective mass and effective dielectric 
constant which approximate electrons in GaAs, and ω=3.32meV is the 
confinement constant of the dot. For this system the FN energy in effective 
atomic units (effective Hartrees) is 7.6001(1). The FHN eigenvalue is 14.752(5), 
and the energy for the equivalent symmetric system is 7.1086(1), giving as an 
estimate for the antisymmetric ground state 7.643(3), which is higher than the 
fixed node estimate.  

(15) 
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More tests of this procedure have been performed on the Be atom, using 
different importance functions with different degrees of optimization6. The 
results are summarized in Table I.  The wavefunctions labelled as A, B and C in 
the table are obtained using in the construction of the hypernodal function, 
antisymmetric functions which are respectively a one-determinant trial 
wavefunction with incorrect cusp and non-optimized parameters (A), a one-
determinant wavefunction with correct cusp and optimized parameters (B), and 
a four-determinant wavefunction with correct cusp and optimized parameters 
(C). 
 

Table I. Fixed-hypernode results for the Be atom 

Wavefunction DMC VMC 

Boson -19.26439(1) -19.27439(1) 

A  FN -14.6578(3) -14.615(2) 

A  FHN -33.9323(3) -33.890(2) 

A  FHN-Boson -14.6579(3) -14.616(2) 

B  FN -14.6571(3) -14.6400(2) 

B FHN -33.9313(3) -33.9144(2) 

B FHN-Boson -14.6570(3) -14.6401(4) 

C FN -14.66721(1) -14.6665(4) 

C FHN -33.94512(20 -33.94158(2) 

C FHN-Boson -14.66719(3) -14.6665(2) 

Exact7 -14.66736 
 

As it can be seen from the table, the results are in contrast with the 
conjecture that the FHN upper bound is lower than the standard FN one. In 
particular, it can be noticed that the FHN estimates for the Fermion eigenvalue 
(i) do strongly depend on the choice of the antisymmetric function used to build 
the hypernodal function and (ii) are essentially the same as the FN estimates for 
that particular antisymmetric function. This result would suggest that although 
the nodal properties of the hypernodal functions are not directly related to the 
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nodes of the antisymmetric function used, some of this information is passed 
into the doubled space. This point is not completely clarified at present. 

It is however possible to show that in general using a good antisymmetric 
trial function for building an hypernodal function does not lead in principle to 
better eigenvalues. In fact, let us assume that we know an approximate 
antisymmetric trial whose nodes are exact. For instance, let us consider the 
problem of a particle in a two dimensional square box of side 1, seeking an 
estimate of  the eigenvalue for the first spatial antisymmetric solution. Let φS be 
an approximation of cos(πx/2). We can build four approximations of the exact 
degenerate antisymmetric eigenstates, each one with an exact node: 
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Obviously, if we used FN-DMC for computing the expectation value of the 
Hamiltonian using any of these function, we would obtain the exact eigenvalue.  
On the other hand, if we build an hypernodal function starting from a symmetric 
function  ΨS= φS(x) φS(y): 
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it is easy to see that the hypernodes are given from the following expression: 
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which in general has hypernodes which (i) depend on the choice of  φS and (ii) 
do not coincide with the exact hypernode. Therefore, the estimate of the energy 
for the antisymmetric state will be worse than the corresponding fixed-node 
estimate. So, in general, it is possible to build hypernodal function with a wrong 
hypernodal surface starting from functions with the correct nodal surface.  

However, in a general case neither the exact nodal structure nor the exact 
hypernodal structure are known, so it is difficult to assess the relative quality of 
the two estimates. 

In general, a possible strategy for better exploiting the hypernodal functions 
would be that of optimizing the hypernodal structure (following a variational 
procedure analogous to that used for standard functions), rather than relying on 

(16) 

(17) 

(18) 
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the optimization of the antisymmetric functions. Some aspects though, like the 
correspondence between the FN and FHN results in the case of the Be atom, 
warrant additional study. 
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